RN Cﬁm

Working Paper No. 340

AD-A215 382

THE THEORY OF STRUCTURED MODELING
by

ARTHUR M. GEOFFRION

DTIC

KLECTE #p
‘% DEC 071989

F’é ? X o
R A

Mav 1087

-———— e — — -

'”7'7.-?':""” TN STATIMENT K

i
i Aoirive s g Fitlic reieqsey
”\su' P, Uniumited

WESTERN MANAGEMENT SCIENCE INSTITUTE

University of Calitornia, Los Angeles

e

WESTERN MANAGEMENT SCIENCE INSTITUTE
University of California, Los Angeles

Working Paper No. 346

ACCe>I0" For

——— }]
May, 1987 NTIS CRALI gJd
DriC TA8 a
tUnanronneed J
Jostitinguor I |
THE THEORY OF STRUCTURED MODELING . C
L' —r o end
VRN
by D stbun ‘buu,_wnn]
. valat bty Codes
Arthur M. Geoffrion L Avail.t By C.i,___d
A:lad or
t Dist Sl

e
A’/_‘l 1 R

Abstract

UA
~ U
-

Q .
INSe |

This paper presents a formal development of the definitions _’//
and theory of structured modeling. It is a companion to the

author's recently published paper "An Introduction to Struc~
tured Modeling”.

Acknowledgments

The foundations of structured modeling emerged early in this
decade from my efforts to develop a broadly applicable theo-
ry of model aggregation. During and since those early days,
I received much valuable input from students and colleagues.
The students (most of whom have since graduated) include E.
Brehm, S. Chari, A. Dechter, C.K. Farn, V. Francis, A. Jain,
S. Jain, C. Jones, and M. Shimony. The colleagues include G.
Bradley, P. Chen, R. Dembo, G. Diehr, D. Dolk, H. Greenberg,
J. Jackson, M. Lenard, J. Mamer, G. Wright, and P. Zipkin.
All have my lasting appreciation.

This work was partially supported by the National Science
Foundation, the Office of Naval Research, and the Navy Per-
sonnel R&D Center. The views contained in this report arc
those of the author and not cf the sponsoring agencies.

THE THEORY OF STRUCTURED MODELING

The author's basic paper "An Introduction to Structured
Modeling" (Geoffrion <1987>)- is an informal, example-based
exposition. The present paper, in contrast, presents a focrmal
development of the definitions and thecry of structured modeling.
It is intended for a technical audience rather than for pros-
pective practitioners of the structured modeling approach.

We assume that the reader is familiar with the first three
sections of Geoffrion <1987> in order to eliminate having to
furnish here a detailed motivation for and introduction to struc-

tured modeling, its uses, and its connections to other fields.

The first two sections prese..t the basic definitions of
structured modeling. The third develops related theoretical
results, and the final section gives a brief conclusion. An
extended example illustrating all of the definitions and theo-
retical propertizs is given in Appendix 1 fcr easy reference.

An important topic not covered in this paper is the matter
of a detailed notational system for expressing structured models.
One such, the one that is the basis for the FW/SM experimental
prototype structured modeling system now being constructed, will
be detailed in a forthcoming report.

The following excerpt from Geoffrion <1987> helps to set the
stage for the technical development that follows.

The formal framework of structured modeling is based
on discrete mathematics. It uses a hierarchically
organized, partitioned, and attributed acyclic graph
to represent a model or a model class. Particular
attention is given to representing semantic as well
as mathematical structure, and to compatibility with
four of the most fundamental mAaripulations applied to
models: retrieval, expression evaluation, solving a
simultaneous system, and optimization.

At the core of structured modeling is the notion of a
definitional system, that is, a system of definitions
of all of the elements constituting a "model". The
definitions have some special properties: they are
typed (there are five types), correlated (interdepen-
dencies are explicit), and certain of the types are
value-bearing. Moreover, the definitions are grouped

by definitional similarity, the resulting groups are
organized hierarchically by conceptual similarity,
and the whole system must be free of circularity.

This kind of definitional system turns out to be
widely applicable within model-oriented fields such
as MS/OR/DSS (for finance, logistics, marketing, pro-
duction, and other application areas), information
systems, economics, and engineering. Thus structured
modeling ideas have the potential for wide adoption.

This kind of definitional system also turns out to
have deep connections to formalisms used in artifi-
cial intelligence, database manageme:t, programming
language design, anda software engineering. These
cennections invite cross-fertilization among these
fields rrom ithe modeiin, perspective.

The mathematical prerequisites of this paper are modest.
Elementary directed graph theory is the main area requiring some
prior familiarity. The terminology used is fairly standard (node,
arc, directed cycle and chain, acyclicity, etc.). Multiple arcs
(more than one arc between a given pair of nodes) re permitted.
The term rooted tree means a finite directed graph with no loops,
only one node with outdegree 0, namely the root, and all other
nodes with outdegree 1. The nodes with indegree 0 are the termin-
al nodes. The immediate descendents of any given node are called
siblings. Every node in a rooted tree has a unique rootpath from
the node to the root (the rootpath includes the given node).
Since arc orientation is obvious under the above definition, one
need not bother to indicate orientation when drawing rooted

trees. When there is no danger of confusion, we may say simply
tree instead of "rooted tree".

A topological sort of an acyclic directed graph produces a
node sequence such that if there is an arc from node A to node B,
then node A comes before node B in the sequence. There are very
simple and efficient algorithms for performing topological sorts
(see, e.g., Knuth <1973>, p. 258ff.).

A tuple is a finite nonempty :'* red collection of compo-
nents. A tuple is segmented when il. .omponents are partitioned
in a contiguous way with non-empty segments. It is permissible
for there to be but a single segment. A partition has the usual
set theoretic definition. A few other mathematical ideas are
defined as the need arises.

1. THE CORE CONCEPTS OF STRUCTURED MODELING

This section presents the core concepts of the structured
modeling framework as a collection of formal definitions. Con-
crete examples are needed for these definitions to be understood.
To preserve the utility of this section and the next as conven-
ient references, however, the examples are deferred to Appendix
1. Hence it would be best for the reader to read Appendix 1 in
parallel with this section.

Commentary is interspersed to explain the intent of the
definitions as an abstraction of the notion of a "model" in
management science and related fields. This commentary does not
amend or augment the formal framework in any way.

Models are viewed in terms of elements. There are five
element types:; these are the subject of the first five
definitions.

1. A primitive entity element is undefined mathematically.

This represents a primitive definition concerning a dis-
tinctly identifiable thing or concept. Every model must have at
least one primitive entity element. Each is introduced at the
discretion and convenience of the modeler without, however, any
presumption that it necessarily represents something irreducible
or unanalyzable (as pointed out, for example, in Section 1.5 of

Sowa <1984>, such a presumption would raise serious philosophical
questions).

2. A compound entity element is a segmented tuple of primitive
entity elements and/or other compound entity elements.

This represents a definition that references other entities
already defined, and that does not require a "value". A compound
entity element can represent a new entity or it can represent a
relationship or association arong extant entities. It can

represent a set, and also a relation in the sense of discrete
mathematics.

3. An attribute element is a segmented tuple of entity
elements together with a unique value in some range.

This allows a value-bearing property to be defined in con-
nection with an entity or combination of entities. "Value" is not
necessarily numerical (the range space is arbitrary).

Most of the data "coefficients" and decision "variables" of
conventional models are represented as attribute elements. 1t is
deliberate that structured modeling does not observe the custom-
ary distinction between "coefficients" and "variables". The
reason is simply that this distinction is unstable in most model-
based studies owing to statistical estimation options, sensitivi-
ty analysis, "what if" analysis, and other needs. However, defi-
nition 16 aves provide for some attribute elements to be classi-
fied as "variable" in the sense explained there.

4. A function element is a segmented tuple of elements to-
gether with a rule that associates a unique value in some
range to this tuple -- more precisely, in the case of non-
entity elemerts, to tire values of these elements provided
these values fall within a prescribed domain.

This is an extension of the attribute element conccpt in
that function and test elements (see the next definition) can
participate in the defining tuple, and the value can be condi-
tional, that is, it can depend on the values of the non-entity
elerents involved. No presumption is made concerning the mathe-
matical structure of the domain or range spaces.

5. A test element is like a function element, except that it
has a two-valued range {True,False}.

Test elements facilitate defining the logical aspects of a
model. One common use is to take account of the equality and in-
equality constraints often encountered in conventional models: a

test element can be set up for each such constraint to indicate
whether or not it is satisfied.

6. The segmented tuple portion of an element is called its
calling sequence. An elerent B is said to call another element
A if A appears in B's calling sequence. A calling sequence
segment has the obvious definition.

The definitional cross-references among the various elements
of a model are a central focus of structured modeling. The call-
ing sequence is the principal abstraction of these cross-
references. The segmentation of a calling seguence identifies the
different roles played by different calls. Here the term "role"
is used in an application context- dependent sense. Calls which
play a similar role normally are put in the same segment. Note
that primitive entity elements do not have calling sequences.

Two conventions should be followed in order for a collection
of elements to represent properly the system being modeled.
First, if the interpretation of a given element refers to some
other recognized element, then that other element should appear
at least indirectly in the calling sequence of the given element.
An "indirect" call is one where the indirectly called element is
in the calling sequence of an element in the calling sequence, or
in the calling sequence of an element in the calling sequence of
an element in the calling semience, etc. Second, no calling se-
guence should contain an element that is patently irrelevant to
the calling element's interpretation. These conventions are not
imposed formally in the modeling framework; they pertain only to
the intended manner of use.

7. A collection of elements is closed if, for every element In
the collection, all elements In the calling sequence of that
elemrent are also in the collection.

Closure is necessary for all cross-references to be defined
within the formal framework.

8. A closed collection of elements is acyclic if there 1s no
sequence (FE1,...,En} such that El1 calls E2,..., En-1 calls En,
where n>1 and En=El.

Our concern is exclusively with systems of elements whose
interpretations involve no circular references. This avoids
problems of indeterminacy such as arise in circular systems of
definitions. Acyclicity is essential in much of what follows.

While acyclicity clearly forbids any element to call itself,
it ic neither possible nor desirable to exclude self-reference
from the intended meaning of an element. In particular, it is

permissible for an element to represent a directly (self-) recur-
sive definition.

9. An elemental structure is a nonempty, finite, closed,
acyclic collection of elements.

This is the first part of the definition of a structured
model. Nonemptiness avoids trivialities. Finiteness avoids ines-
sential technical difficulties, although an extension to models
with an infinite number of elements could probably be made that
would be satisfactory for most purposes. The rationale for
closedness and acyclicity has already been given.

10. A generic structure is defined on an elemental structure
as a collection of partitions, one for each of the five types
of elements. The resulting mutually disjoint and exhaustive
el ment sets are called genera (plural of genus).

Generic structure is intended to renresent the phenomenon ot
"parallel structure" so commonly observed in real models. All of
the elements of a given genus are supposed to be "alike" except
for details; it should be meaningful a~d natural to speak of a
"generic" element.

Models become large in practice primarily because cf par-
allel structure. One indication of this is the wide use of indewx
variables, which are used in conventional models to simplify
notation through the exploitaticn of such structure.

In the context of model aggregation, a very important role
of generic structure is to identify maximal sets of elements
within which aggregation can take place.

It turns out that, in most applications, some possible gen-
eric structures are inconsistent with any reasonable interpre-
tation of "parallel structure", or they may have undesirable
mathematical properties. We therefore limit consideration for the
most part to generic structures satisfying the next property. It
says, roughly, that the elements in a genus shouldn't be too
different in terms of what other elements they depend upon. This
acts to limit the allowable coarseness of generic structure.

11. A generic structure satisfies the generic similarity
property 1if the following is true for every genus (other than
primitive entity genera): every element in the genus has the
same number ~f calling seguence segments and all calls in a
given segment are to the same genus; moreover, each segment
calls the same Jenus for every element.

When this property holds, one can speak in the obvious
sense of one genus "calling" another, and of a "genus' calling
sequence".

The next concept is designed to recognize the hierarchical
"conceptual structure" by which groups of genera take on higher
semantic meaning. As elements are organized into genera, so may
genera be organized into conceptual units (modules), which in
turn may be organized into higher level conceptual units, etc.
until the whole becomes the "model" itself as the root module. In
this way, models of arbitrary complexity can be rendered more
manageable through meaningful hierarchical organization.

12. A modular structure is defined on a generic structure as
a rooted tree whose terminal nodes are in 1:1 correspondence
with the genera. The non-terminal nodes are called modules.
The default modular structure corresponds to the simplest
possible such rooted tree, namely the one with only one
module (the root).

Since the default modular structure is always permitted, it
is never limiting to assume that a given generic structure has a
modular structure associated with it.

The next definition orders the modular structure tree in a
way that ties modular structure closely to the underlying calling
relationships among genera. The full significance of this order-
ing will not be apparent until Definition 23 of Section 2 and
Propositions 5-~7 of Section 3.

13. A monotone ordering of a modular structure defined on a
generic structure satisfying similarity is specified by an
order for each sibling set. These orders are extended in the
usual way to obtain a strict partial order over all nodes ex-
cept the root whereby any two nodes can be compared so long as
neither lies on the rootpath of the other. This partial order
is monotone in the following sense: 1f genus B calls genus A
and A and B are descendents of distinct sibling nodes #1 and
#2 respectively (A=#1 and/or B=#2 permitted), then #1 comes
"before" #2 in their sibling order.

The definition of the "usual extension" of sibling set
orders is as follows (e.g., p. 77 of Aho, Hopcroft, and Ullman
<1983>): if N1 and N2 are sibling nodes and N1 comes "before'" N2,
then all descendents of N1 come "before'" all descendents of N2.

All of the components necessary to define a structured model
sre nov oatr Mand

14. A structured model is an elemental structure together with
a generic structure satisfying similarity and a monotone-
nrdered modular structure.

Structured models are not always specified in complete
detail. This possibility is recognized in the next two defi-
nitions.

15. A completely specified structured model requires explicit
enumeration and specification of all elements 1in detail (in-
cluding all calling sequences, attribute values, and function
and test element rules), a generic structure satisfying sim-

larity, and a monotone-ordered modular structure. Otherwlse,
a structured model 1s said to be incompletely specified. A
completely specified elemental structure has the obvicus
definition.

Unless otherwise indicated, the term "structured model"
means a completely specified structured model.

16. Attribute elements whose values are discreticnary, and
hence likely to change or to be placed under sclver control,
may be designated as variable attribute elements; these can b«
entire attribute genera or arbitrary subsets thereof. An A-
partially specified structured model or elemental structure 1is
one that is completely specified except for the values of 1its
variable attribute elements.

Variable attribute element values play much the same role
as "variables" in many kinds of conventional models. Note that
omitting values for attribute elements does not cast into doubt
generic similarity, nor does it interfere with the specification
of a monotone-ordered modular structure.

The typical practical model is very incompletely specitfied
when first formulated. The deqree of specification gradually in-
creases as details are settled and data are developed until the
degree of specification reaches a "final" level (usually either
complete or A-partial) appropriate to the intended purpose. Usu-
ally the final level of specification is attained more than once;
there may be a succession of models over time (as in the case of
data base applications) or a variety of model cases to be studied
(as in many management science applications), but all of these
are simply different specifications of the same basic model.

17. Evaluation is the task of determining the values of the
function and test elements of an elemental structure.

Because of elemental structure acyclicity, evaluation always
can be performed in a single pass based on the order recculting
from a topological sort. See Proposition 4 in Section 3 and the
subsequent discussion. Alternatively, one-pass evaluation can be
guided by the modular ouliine defired in the next section.

A structured model itself provides no means for performing
evaluation. This is a task requiring some mechanism external to
the model. Ideally, such a mechanism should be an integral part
of a structured modeling system.

Evaluation can turn out to be an ill-posed task. For ex-
ample, an att-—-ibute value may not fall within the domain of def-
inition of a functicn element's rule. We wish to preclude this
possibility by assuming hereafter the following property unless
it is explicitly dropped.

18. A well-ie ined elemental structure is one whose specifica-
tion, if -.. complete, can be completed so that evaluation Is
a mathenatically well-posed task:; that is, so that all func-
tion and test element argument values are In their respective
domains.

Practical and theoretical applications of models typically
irvolve not a single model instance with particular data, but
rather an entire class of model instances that are very similar
in character. To put it another way, many uses of medels require
focusing on the general form of a model rather than on the data
needed to specify a particular model instance. The notions of
"general form" and "model class" are really one, and <an be
formalized as follows.

19. A model schema is any prescribed class of structured
models that salisfies isomorphism in this sense: gilven any two
models 1in the class, their modules and genera can be placed 1n
1:1 correspondence in such a way that (a) adjacency 1s pre-
served in the modular structure trees, and (b) corresponding
genera have the same number of calling sequence segments and
call corresponding genera from each segment.

Perhaps the easiest way to specify a model schema is via an
incompletely specified structured model, where the nature of the
incompleteness is controlled carefully. For example, it is easy
to see that any A-partially specified structured model can be
viewed as a model schema. In most applications, however, the
model schemata of greatest interest involve more than simply
omitting some element values; for instance, it is common to leave
indefinite even the number of elements in certain genera.

Note that the definition of a model schema has nothing to do
with the ordering (monctone or otherwise) of a modular structure
tree. The isomorphism reguirements do not mention ordering be-
cause it 1s only the existence of a monotone ordering that is
important in most model classes arising in practice, and not the
particular ordering chosen for what may be subjective or arbi-
trary reasons.

As mentioned earlier, all of the above definitions are
illustrated in Appendix 1.

2. ASSOCIATED CONCEPTS AND CONSTRUCTS

The previous section gave the coure concepts of structured
modeling. Here we give definitions of several assoclated concepts
and construc*s that do not extend the modeling framework in a
formal sense, but which facilitate working with it.

As for the previous section, the reader is strongly urged to
read Appendix 1 in parallel with this section. It illustrates all
of the definitions given here.

20. A view of a modular structure is any subtree (i.e., & sub-
graph of the original rooted tree that 1s also a rooted tree)
that keeps the original root and that does not separate orig-
inal siblings (i.e., if two nodes have the same parent in the
original tree, then they are either both in or both out of the
subtree). A view always inherits an ordering from the modular
structure 1f the modular structure has one. The master view
corresponds to the subtree that is the original tree itself.
Synonyms ror "master view', "view", and "node of a subtree"”
are, respectively, master conceptual structure, conceptual
structure, and conceptual unit.

Every view other than the master view constitutes a simpler
hierarchical conceptual structure than the master view. The sin-
plification takes place by combining conceptual units from the
bottom up in their natural hierarchical order. In this way, con-
ceptual structures can be tailored so that they contain just the

right level of detail for the intended target audience or concep-
tual analysis.

It should be noted that the term "view" has another meaning
in the literature on database management systems (e.g., Date
<1981> or Ullman <1982>).

The next definition is preparatory to the one following it.

21. Assoclated with every view is a genus partition with one
cell for every terminal node of the subtree; the genera in the
cell corresponding 2 a given terminal node are the descen-
dents of that node, that is, those genera whose rootpath in
the original tree includes the given terminal node.

The genus partition identifies the genera constituting the
smallest conceptual units associated with a view. For the master
view, the genus partition has exactly one genus per cell.

lo

It is cesiraple for corceptual structures to inherit the
lack of circular referencas in the underlying elemer*al struc-
ture. This 1is the concern of the next definit.cn.

22. Given a modular structure defined on a generic structure
satisfying similarity, a view 1s acyclicity-preserving 1f the
associated genus partition nas the property that no subsect of
its cells can be arranged in a >2quence (Cl,...,(n}) such that
some genus in Cl1 calls scme genus In C2, . ., sore genus 1in
Cn-1] calls some genus in Cn, where n>1 and Cn=C. The modular
structure 1itself is said to pe acycliciliy-preserving if every
possible view 1s acyclicity-presarving.

Next we give an equivalent representation of modular struc-
ture that is particularly useful. It displays all mcodules and
genera along a single dimension in such a wav that there are no
forward references (see ?Propos.tion € in Section 3).

23. The modular outline of an ordered modular structure
(whether moncotone or not; is th- indented list representaticn
corresponding to the preorder traversal. The outline for any
view is defined similarly.

Both of the concepts involved here, namely indented list
representation of a tree and preorder traversal fc: ordered
trees, are standard in computer science (e.g., Knuth <1973> pp.
309 and 334). What this means in simple terms is that all nodes
of the modular structure tree are listed vertically, one to a
line, with the indentation of each node proportional to the
length of its rootpath; the root node is listed first, the nodec
of each subtree are contiguous and begin with the root of the
subtree, and siblings are always listed in their given order.

Other equivalent representations of the modular structure
tree as an indcuied list are possikle. For example, postorder or
inorder traversal cculd be used. Hcuever, these representations
appear less natural for present purposes thaa the one based on
preorder traversal.

24. The element graph of an elemental structure Is an attrib-
uted directed graph with a node for every element and an arc
from element B to element A if element A calls element B (more
precisely, there is an arc for every such call). Every node
has an attribute denoting its type (primitive entity, compound
entity, attribute, function, or test). Every non-entity node
has another attribute giving its value, every attribute node
has another attribute giving Iits range, and every function and
test nod. has an attribute giving its rule. Every arc has two

.—11_

attributes; the first identifies the calling sequence segment
to which it correspoads, and the second identifies 1its
position within the segment.

The element graph portrays vividly the cross-references
among elements. More than that, it is a precisely equivalent
representation of an elemental structure. Since the collection of
elements is acyclic, it follows of course that the element graph
is acyclic in the usual graph theoretic sense.

25. The genus graph of a generic structure satisfying similar-
ity is a directed graph with a node for every genus and an arc
for every segment of every genus (primitive entity genera ex-—
cepted) directed from the genus being called to the calling
genus.

The genus graph portrays cross-references among genera. It
is a far more manageable portrayal than the element graph for
most purposes.

26. The module graph corresponding to a view of a modular
structure is a directed graph with a node for every cell of
the associated genus partition and an arc from cell A to cell
B (where A and B are distinct) if and only 1f some genus of
cell B calls some genus of cell A.

The module graph portrays cross-references among the small-
est conceptual units of a view. It takes the place of the genus
graph for presentations of a structured model based on views
other than the one provided by the default modular structure.
The module graph corresponding to the master view of any modular
structure coincides with the genus graph with multiple arcs re-
moved (i.e., at most one arc is allowed between each pair or
nodes) .

Element, genus, and module graphs are related to one another
through the notion of condensation. If G is a directed graph and
P is a partition of the neodes of G, then the condensation of G
with respect to P is a graph having a node for every cell of P
and en arc from cell i to distinct cell) if and only if G has an
arc from some node of cell i to some node of cell j (see, e.g.,
Harary, Norman, and Cartwright <1965>). It is evident that a
genus graph with multiple arcs eliminated is always the condensa-
tion of an element graph sans attributes with respect to the
generic structure. Similarly, a module graph is always the con-
densation of a genus graph with respect to the genus partition
associated with the corresponding view.

1"7....

The next two definitions are based on standard concepts from
graph theory.

27. The adjacency matrix corresponding to an element graph, a
genus graph, or a module graph is a square matrix with a row
and column for every node of the graph and a "1" in row 1 and
column j if there is an arc from the node of row i to the node
of column j; all other entries are zero. (Informally: "column
calls row".)

An adjacency matrix is an alternative representation of a
graph that is easier to produce typographically:; however, it
ignores the attributes of an element graph and the possibility of
multiple arcs for element and genus graphs. It is well-suited to
tracing the references to or from any given node. Usually it is
best to choose (if possible) the row/column order so that an
upper triangular matrix results. When a monotone ordering of the
modular structure is available, using the corresponding preorder
traversal sequence necessarily results in an upper triangular
matrix for the element graph, genus graph, and all module graphs.

The adjacency matrix for the module graph corresponding to a
given view is easy to determine once the adjacency matrix for the
genus graph is available. Any view can be specified by listing
the modules that are terminal nodes in the view's subtree. The
associated genus partition is easy to identify from this list of
modules thanks to the indentation structure of the modular out-
line. The genera of each cell of the genus partition are all
contiguous in the modular outline and will therefore correspond
to adjacent rows and columns of the genus adjacency matrix
(assuming that the preorder traversal sequence corresponding to
the ordering is used as usual to establish row/column order). It
is easy to see that the rows and columns of the genus graph's
adjacency matrix can be aggregated by Boolean summation to obtain
the desired module graph adjacency matrix (one final step is
necessary: zero out any 1's on the diagonal).

28. The reachability matrix corresponding to an element graph,
a genus graph, or a module graph 1s a square matrix with a row
and column for every node of the graph and a "1" in row 1 and
column j if there is a directed path from the node of row 1 to
the node of column j; all other entries are zero. By conven-
tion, diagonal entries are taken to be unity.

The reachability matrix of an element graph can be read two
ways: (a) by columns to determine all of the elements referenced
directly or indirectly by the column element, and (b) by rows to
determine all of the elements that directly or indirectly refer-
ence the row element. Similar statements can be made about the
reachability matrices of genus and module graphs.

_.1 3 -

A reachability matrix is easy to calculate from the corres-
ponding adjacency matrix; see the algorithm given in Appendix 2.

3. SOME THEORETICAL RESULTS

This section develops some elementary but useful results
about the definitions of the previous two sections.

The first result confirms a rather obvious fact.

Proposition 1. In an elemental structure with a generic
structure satisfying similarity, no element calls another
element in the same genus.

Proof. Suppose, to the contrary, that some element in genus G
calls another element in genus G. Then by generic similarity,
every element in G calls another element in G. By the finiteness
of the number of elements of G, this implies that there is a
cycle of elemental calls among the elements of G, which violates

the acyclicity of the elemental structure. Thus the supposition
must be false.

QED

The second result shows that genus graphs inherit the
acyclicity of element graphs.

Proposition 2. Genus graphs are always acyclic.

Proof. Recall that genus graphs are defined only when the
generic structure satisfies generic similarity. Suppose that the
genus graph contains a directed cycle, say {Gl1, G2, ..., Gn-1,G1l}
where G1 calls G2, which calls G3, ..., which calls Gn=Gl. We
wish to show that an elemental cycle must then exist, for this
would contradict the acyclicity of the elemental structure and
thereby demonstrate that the supposition must be false. Take any
element in G1 and trace a directed chain through elements in G2,
G3, ..., and so on back to Gn=Gl again. This may be done by sup-
position and the generic similarity property. If the terminal
element in G1 is the starting one, then an elemental cycle has
been found. If the terminal element is not the starting one, then
by the similarity property another directed elemental chain can
be constructed that starts at the terminal element just found and
ends in Gl. If any element of the new chain coincides with any
element of the earlier chain, then an elemental cycle has been
found. If not, the chain can be continued in a like manner.

Eventually, since there is but a finite number of elements, some
element must be encountered again, thereby establishing an
elemental cycle.

QED

One can view Proposition 2 as demonstrating that the calls
among genera induce a strict partial order over all genera. Thus
the last sentence of definition 13 can be rephrased informally
as: "This partial order is monotone in that it is consistent with
the partial order induced by calls among genera."

A well known and important property of acyclic directed
graphs is that their nodes can be classified into ranks such that
nodes of rank r (r>1) have incoming arcs only from nodes of lower
rank including at least one node of rank r-1. The classification
is unique.

Element and genus graphs can be ranked, for both are
acyclic. The next result shows that these rankings are consistent
when viewed in terms of elements.

Proposition 3. Consider an elemental structure together
with a generic structure satisfying similarity. The rank
of any element based on the element graph is identical to
the rank of the element’'s genus based on the genus graph.

Proof. It suffices to show that the genus-based ranking of all
elements coincides with the element-~based ranking for all r>o0,
where r denotes genus rank. Clearly this is true for r=1, for
which the genera simply partition the primitive entity elements
(which all have element rank 1). Suppose it is true for all r
less than or equal to R, where R is a fixed positive integer. To
see that it is true for R+1, consider any element of genus rank
R+1. This element must call some element whose genus rank is R,
and all of its other calls must be to elements of genus rank R or
less. Hence this element must call some element whose element
rank is R, and all of its other calls must be to elements of
element rank R or less. It must therefore be of element rank R+1.

QED

Corollary 3.1. Consider an elemental structure together
with a generic structure satisfying similarity. For every
genus, all of its elements must be of the same type and
elemental rank.

Proof. Consider any two elements in any given genus, say el and
e2. The definition of generic structure guarantees that they are
both of the same type. Proposition 3 guarantees that they both

15

have the same elemental rank as their genus rank. Since both
elements are in the same genus, it follows that both elemental
ranks must be the same.

QED

It is convenient to record here the rankability of genus
graphs.

Proposition 4. When generic structure satisfies similarity,
all genera can be classified uniquely into ranks in such a
manner that

(1) rank one genera call no other genera, and

(1i) for r>1, every genus of rank r calls at least one
genus of rank r-1, possibly other genera of rank
less than r-1, but no genus of rank greater than r-1.

It is a simple matter to classify genera by rank. Rank 1
consists of all primitive entity genera. Rank 2 consists of all
genera which call only primitive entity genera. Rank 3 consists
of all remaining genera which only call genera of ranks 1 and 2.
In general, rank r consists of all remaining genera which call
only previously classified genera.

Evaluation can be done in one pass rank by rank, in
ascending order. This is a fact of considerable computational
significance.

Classifying nodes by rank is really just a kind of topolog-
ical sort, namely the one which uses the fewest possible distinct
node labels. While any topological sort enables evaluation to be
done sequentially in a single pass, this particular sort maxi-
mizes the opportunities for parallel computation (an opportunity
that future computers are likely to be able to exploit).

We turn now to the acyclicity of module graphs. Recall
definitions 22 and 26. Consider any view of a modular structure
defined on a generic structure satisfying similarity. Clearly
the corresponding module graph will be acyclic if and only if
the view 1is acyclicity-preserving. The next result shows that
acyclicity always obtains for a structured model.

Proposition 5. Module graphs for structured models are
always acyclic.

Proof. Consider any view of any structured model. Suppose that
this view is not acyclicity-preserving. Then there is a sequence
of cells {Cl1,...,Cn) of the associated genus partition such that
some genus in Cl calls some genus in C2, ..., some genus in Cn-1
calls some genus in Cn, where n>1 and Cn=Cl. Consider the image

~-16-

of this cycle in terms of the modular outline. Because the genera
of each cell of the genus partition occupy consecutive positions
in the list, the image of the cycle clearly is inconsistent with
the no-forward-reference property of the outline. Thus the sup-
position must be erroneous and the desired result is at hand.

QED

The property used at the end of the last proof deserves to
be formalized.

Proposition 6. If genus B calls genus A in a structured
model, then A comes before B in the modular outline.

Proof. Consider any structured model. Suppose that genus B calls
genus A. Then, by the definition of monotone ordering, the node
corresponding to genus A must come "before" the node of genus B
in the usual partial order extension of the sibling orders. But
it is well known that a preorder traversal of the nodes of an
ordered rooted tree preserves the usual partial order extension
of the sibling nodes, that is, if node N1 comes "before" node N2
in the usual partial order extension, then N1 comes before N2 in
the preorder traversal sequence. Thus genus A comes before genus
B in the indented list representation corresponding to the
preorder traversal.

QED

Consider an elemental structure, together with a generic
structure satisfying similarity and a modular structure. It is
natural to wonder about the existence of a monotone ordering and
how to construct one, for without a monotone ordering there can
be no structured model.

Existence is in doubt because it is easy to find situations
in which no monotone order exists. One can verify that such a
situation is the following: 1let there be three genera, with
genus C calling genus B and with genus B calling genus A; and
let A and C (but not A and B and C) be siblings in the modular
structure.

The following result gives two characterizations of when a

monotone ordering exists. One is primarily of theoretical inter-
est, and the other is simple and consiructive.

Proposition 7. Consider an elemental structure, together
with a generic structure satisfying similarity and a modular
structure. The following are equivalent:

(1) a monotone ordering exists

(ii) the modular structure is acyclicity-preserving

-17-

(iii) for every sibling set of the modular structure
tree, no subset of the siblings can be arranged in
a sequence (S1,...,8n} such that some genus descen-
dent of S1 calls some genus descendent of S2, ...
some genus descendent of Sn-1 calls some genus
descendent of Sn, where n>1 and Sn=S1.

’

Proof. To s<e that (i) ==> (ii), censider any view. As observed
just prior to rroposition 5, it is acyclicity-preserving if its
module graph is acyclic. Acyclicity of the module graph follows
from Proposition 5, which applies because of (1). To see that
(ii) ==> (iii), consider any sibling set of the modular structure
tree and any view whose terminal nedes include this sibling set.
Since the modular structure is acyclicity-preserving, this view
is also acyclicity-preserving, which implies (iii) by definition
because the siblings are among the view's terminal nodes. Final-
ly, to see that (iii) ==> (i) one observes that (iii) implies a
topological sort is possible for each of the sibling sets of the
modular structure tree; that is, it is possible to arrange each
sibling set in a sequence {S1,S2,...} such that some genus de-
scendent of Si calls some genus descendent of Sj (i and j dis-
tinct) only if j < i. Obviously, this constructs a monotone
ordering.

QED

The constructive procedure used in the last part of the
proof is important because it gives a simple way to construct
monotone orderings when they exist for a given modular structure:
just attempt a topological sort of each sibling set. If this
succeeds for all sibling sets, the resulting topological labeling
yields one or more monotone orderings (but not necessarily all
possible monotone orderings). If the attempt fails for some sib-
ling set, then no monotone ordering exists. This procedure can be
implemented efficiently using only the adjacency matrix of the

genus graph and the modular outline (the order need not be
monotone) .

Although explicit topological labeling can be useful, exper-
ience shows that monotone orderings of sensible modular struc-
tures are not difficult to devise. Suppose that one has an
elemental structure together with a generic structure satisfying
similarity. It is no problem at all to write down a plausible
modular structure tree that is ordered, and this can always be
done in outline form -- that is, using an indented list repre-
sentation based on the preorder traversal sequence. If there are
no forward references among genera in the modular outline, then
the order used for the modular structure tree is monotone. The
converse 1is also true. Thus the practical task of devising a
monotone-ordered modular structure can be viewed as an exercise

in arranging all genera in outline form without any forward ref-
erences among them.

-18-

The final result is a simple one but, in view of Proposition
7, it does settle (in the affirmative) the gquestion of the exist-
ence of a monotone-ordered modular structure for any given ele-
mental structure together with a generic structure satisfying
similarity.

Proposition 8. For any elemental structure together with a
generic structure satisfying similarity, the default modular
structure 1s necessarily acyclicity-preserving.

Pronf. Only one view is possible for the default modular struc-
ture. The definition of "acyclicity-preserving" reduces in this
case to the requirement that the genus graph must be acyclic. It
is, by Proposition 2.

QED

4. CONCLUSION

The basic concepts of structured modeling, introduced infor-
mally and used in Geoffrion <1987>, have all been developed here
formally. Tn addition, we have obtained some associated theoret-
ical results for possible use in future work. An extensive exam-
ple appears in Appendix 1.

Various extensions of the formal modeling framework given
here may be achievable. Some possibilities are suggested in the
last section of Geoffrion <1987>.

This paper is part of a series. The next in this series will
present formally a complete notational system for expressing
structured models and model schemata. That notational system is
used by an experimental prototype now under development that will
be the subject of another paper.

~-19-

REFERENCES

AHO, A.V., J.E. HOPCROFT and J.D. ULLMAN <1983>. Data Structures and
Algorithms, Addison-Wesley, Reading, MA.

BERZTISS, A.T. <1975>. Data Structures: Theory & Practice, Second
Edition, Academic Press, New York.

DATE, C.J. <1981>. An Introduction to Database Systems, Volume
1, Third Edition, Addison-Wesley, Reading, MA.

GEOFFRION, A. <1987>. "An Introduction to Structured Modeling,"
Management Science, 33:5 (May), 547-588. A version that includes
a section on implementation will also appear in Proceedings of
the Conference on Integrated Modeling Systems (held at the Uni-
versity of Texas, Austin, October 1986). The latter version is
available as Working Paper No. 338, Graduate School of Manage-
ment, UCLA, revised February 1987,

HARARY, F., R.Z. NORMAN and D. CARTWRIGHT <1965>. Structural Models:

Air Inlroduction to the Theory of Directed Graphs, John Wiley, New
York.

KNUTH, D.E. <1973>. The Art of Computer Programming, Vol. 1:

Fundamental Algorithms, Second Edition, Addison-Wesley, Reading,
MA.

SOWA, J.F. <1984>. Conceptual Structures: Information Processing
in Mind aid Machine, Addison-Wesley, Reading, MA.

ULLMAN, J.D. <1982>. Principles of Database Systems, Second
Zdition, Computer Science Press, Rockville, MD.

20

rII-IIlIllIIIIlIIIIl.lllIIlIl-.-..-.ll...lIIIIII-II-------4

APPENDIX 1

AN ILLUSTRATIVE EXAMPLE: THE TRANSPORTATION PROBLEM

This appendix is designed to be read in parallel with Sec-
tions 1-3. It illustrates all of the definitions and most of the
propositions thereof using a very simple model familiar to anyone
who has taken a first course in management science: the ordinary
Hitchcock-Koopmans transportation model.

Consider two plant: producing a single product for shipment
to three customers. Every eligible plant/customer transportation
link has an associated unit transportation cost. Every plant has
a maximum supply capacity and every customer has an exact demand
requirement. We are interested in alternative patterns of trans-
portation flows that honor production capacities and demand re-

gquirements, and we are also interested in total transportation
cost.

This model is presented first informally in nc*ural language.

It is then developed formally within the structured modeling
framework.

1. There is a plant in Dallas called DAL.
2. There is a plant in Chicago called CHI.

3. DAL has a supply capacity of 20,000 tons.
4. CHI has a supply capacity of 42,000 tons.

5. There is a customer in Pittsburgh called PITTS.
6. There is a customer in Atlanta called ATL.
7. There is a customer in Cleveland called CLEV.

8. PITTS has a demand of 25,000 tons.
9. ATL has a demand of 15,000 tons.
10. CLEV has a demand of 22,000 tons.

11. There is
12. There is
13. There is
14. There is
15. There is

transportation link from DAL to PITTS.
transportation link from DAL to ATL.

transportation link from DAL to CLEV.
transportation link from CHI to PITTS.
transportation link from CHI to CLEV.

SV s o T e}

16. There can be a nonnegative transportation flow (in tons) over
any transportation link.

17. The cost rate of using the link from DAL to PITTS is $23.50
per ton.

18. The cost rate of using the link from DAL to ATL is $17.75
per ton.

-21-

183. The cost rate of using the link from DAL to CLEV is $32.45

per ton.

20. The cost rate of using the 1link from CHI to PITTS is $7.60
per ton.

21. The cost rate of using the link from CHI to CLEV is $25.7%5
per ton.

22. There is a TOTAL COST associated with all transportation

flows equal to the sum over all links of the transportation
flow times the cost rate.

23. The total transportation flow leaving DAL either does or does
nct pass the test of falling within its supply capacity.

24. The total transportation flow leaving CHI either does or does
not pass the test of falling within its supply capacity.

25. The total transportation flow arriving at PITTS either does
or does not pass the test of being exactly equal to the PITTS
demand.

26. The total transportation flow arriving at ATL either does or
does not pass the test of being exactly equal to the ATL
demand.

27. The total transportation flow arriving at CLEV either does or

does not pass the test of being exactly equal to the CLEV
demand.

The standard cptimization problem associated with this model
is to find values for all transportation flows so as to minimize

TOTAL COST subject to a positive outcome for all of the tests
defined in 23-27.

Items 1-2 and 5-7 will be represented as primitive entity
elements.

Items 11-15 will be represented as compound entity elements.
Using an obvious notation, the (segmented) tuple for 11 can be
written (1;5), the tuple for 12 as (1;6), and so on. Note that a
semicolon is used to delimit segments.

Items 3-4, 8-10, 16, and 17-21 will be represented as
attribute elements. The tuple for 3 is (1), the tuple for 8 is
(5), the tuple for 17 is (11), and =o on. All values have the
real numbers as their range. A comment is in order concerning 17:
why 1is its tuple not (1;5)? The answer is that, although 17 does
indeed refer to DAL and to PITTS, the purpose of 17 is to de-
scribe a property associated with the transportation link from
DAL to PITTS; item 11 is therefore the proper reference. Of

course, 1i refers to 1 and to 5, so 17 refers indirectly to 1 and
to 5.

Note that item 16 actually stands for a collection of five
items, each one pertaining to a specific link. They will be
labeled 16a, 16b, ..., l6e (corresponding, respectively, to items

22

11-15). These items would all be treated as variable attribute
elements in the context of the standard optimization problem
mentioned above.

Item 22 will be represented as a function element. Its
tuple is (17,18,19,20,21; 16a,16b,16c,16d,16e). Note that the
first segment is for cost rates, and that the second is for
flows. The rule is a linear function. The range of the value 1is
the real numbers. The domain is a pair of real vectors of iden-
tical dimension.

Items 23-27 will be represented as test elements. The tuple
for 23 is (16a,16b,16c; 3), the tuple for 25 is (16a,16d; 8), and
so on. The rules for 23 and 24 correspond to linear inequalities
viewed as logical expressions, while the rules for 25-27 corres-
pond to linear equalities viewed as logical expressions. These
five elements are not thought of as "constraints" in the usual
sense of linear programming, but rather as indicators of whether
or not said constraints hold for a given set of numerical
transportation flows.

The calling seguences have been noted above as segmented
tuples with semicolon delimiters. One would say, for example,
that the element corresponding to 23 calls the elements corres-
ponding to 16a, 16b, 16c in its first calling sequence segment,
and 3 in its second segment.

Given these calling sequences, the elements clearly consti-
tute a closed collection with 31 members (remember that 16 must
be counted five times).

This collection clearly is acyclic because every call is to
some element that appears above the calling element in the list
of items as written above.

Since the collection of elements 1s nonempty, finite,
closed, and acyclic, it constitutes an elemental structure. The
element graph (sans attributes) of this elemental structure is
shown in Figure 1. Clearly it is acyclic.

23

Fig. 1 ELEMENT GRAPH

The adjacency matrix corresponding to the element graph is
as follows when the rows and columns are ordered in the sane
sequence as the original items. Row and column spaces have been
introduced to preserve the grouping of the original items.
Actually, we give a slight variant of the adjacency matrix that
records the calling sequence segment for each call. Observe that
this matrix is upper triangular; this verifies acyclicity.

Each column indicates which elements the column elenent
calls. Each row indicates which elements call the row elenment.

11111
1 11111 66666 11122 2 2

12 34 567 890 12345 abcde 28901 2 3
1 . 1 11 1.
2 . . 1 . 11
3 1
5 . 1 . 2 . 2 .
6 . . 1 .2 . . .
7 . 1 2 2
3
9 . . .
10 . . .
11 e . 1 . . i . .
12 1 . 1
13 .o .. 1 . . 1
14 e e e e e e P P
19 . . . e e e e . e e e e . S .
i6a 2 2
16b e e . 2 2
l6c . . - 2 2
led 2
lhe . 2
17 1
18 1
19 e . . . 1
20 1
21 . . - e . 1

22 e .

25
26
27

The reachability matrix corresponding to the element
graph is as follows when the rows and columns are ordered in
the same sequence as for the adjacency matrix. This matrix was
calculated using the simple algorithm of Appendix 2.

-.25_-

[E-N 8}
O8]
I o
N o

N

[\

=

11
12
13
14
15

16a
16b
lec
1e6d
16e

17
18
19
20
21

22

23
24

25
26
27

11111

1 11111 66666 11122 2 2
12 34 567 890 12345 abgcde 78901 2 34
1 1. . . 111.. 111. 111 101
.1 1 . . 11 11 11 1 1
R R . . . 1.
S 1
.. 1. 1 1 1 1. .1 1 1 1 11
T | S .1, . 1 101
.. .1 . .1 . 1.1 . .1.1 . 1.1 1 11
R D 1. .1 1 1
. 1 1 N 1 1
. . 1 .1 .. 1 1 1.
.. 1 1 .. 1 1 .1
. . R S .11 1
. . . 1. .. 1 1
.1 1 1
.. . . . 1. . .. 101 .
-1 . . 1 1
.. 1. .1 1

. 1 .1

. . 1. 1

. . .. 1 1

.. 11

.. . . 1
. . 1.
1

Each column tells which elements are called directly or in-
directly by the column element. For example, element 17 directly
or indirectly calls elements 1, 5, and 11. Each row tells which
elements directly or indirectly call the row element. For ex-
ample, element 1 (representing che plant in Dallas) is called
directly or indirectly by fifteen elements.

-26~-

lmw

—

oy N

[~ N

A natural generic structure is indicated by the grouping of
the items as originally given. For example, the primitive enti-
ties are partitioned into plants and customers. Here is that gen-
eric structure, with each cell (genus) named for future reference.

Genus
Partition of primitive entities: (1,2) PLANT
(5,6,7) CUST
Partition of compound entities: (11,12,13,14,15) LINK
Partition of attribute elements: (3,4} SUP
{8,9,10} DEM
{l6a,16b,16c,16d,16e) FLOW
{17,18,19,20,21} COST
Partition of function elements: (22} S
Partition of test elements: {23,24) T:SUP
{25,26,27) T:DEM

Note that a partition can have but a single cell (e.g., the
compound entity partition); and a cell can have as few as just
one element (e.g., $). Note also that a transportation model with
10,000 customers would still have only 10 genera.

Generic similarity can be checked by studying the adjacency
matrix variant detailed previously; its rows and columns are
grouped by genus and it records the calling sequence segment for
each call. Consider genus T:SUP. Both of its elements have two
calling sequence segnments, the calls in each segment are always
to the same genus, the first segment calls only FLOW for both
elements, and the second segment calls only SUP for both ele-
ments. Thus generic similarity holds for this genus. Similar
checks can be carried out for the other genera.

The genus graph corresponding to this generic structure is
shown in Figure 2. It is acyclic, as predicted by Proposition 2.
Comparison with the element graph (sans attributes) shows that it
is a condensation of it.

The genus ranks are easy to see from the genus graph. The
topological sort first identifies PIANT and CUST, as these have
no incoming arcs. After "erasing" the outgoing arcs of these two
genera, the topological sort then identifies SUP, LINK, and DEM
as having no incoming arcs. And so on. The result of the topo-
logical sort is as follows. This illustrates Proposition 4.

Rank Genera

1 PLANT, CUST

2 SUP, LINK, DEM
3 COST, FLOW

4 $, T:S5UP, T:DEM

27

T:SUP T:DEM

ﬂwl

COST FLOW
SUP LINK
PLANT CUST

Fig. 2 GENUS GRAPH

The adjacency matrix corresponding to the genus graph is:

Rz
o
N Nale!
s Rmo
PR 2=
2ot
N NeNe]
g G
=Rmo

PLANT
SUP
CUST . . 1
DEM 01
LINK11 .
FLOW1
COST 1

= e
= .

.
.

T:SUP
T:DEM

The reachability matrix corresponding to the genus graph is:

P T T
L C L F C : :
A 8 U D I L O S D
N U § E N O s U E
T P T M K W T $ P M
PLANT 1 1 . . 1 1 1 1 1 1
SUP . 1 . . . 1 .
CUST . . 1 1 1 1 1 1 1
DEM . . . 1. 1
LINK 1 1 1 1 1 1
FLOW 1 . 1 1 1
COST i 1 .
) . . 1 .
T:SUP 1 .
T:DEM 1

Consider the following modular structure. Note that each
module is given a name beginning with an ampersand.

PLANT
&SDATA -<::::::::::::::

SUP
CuUsT
&CDATA -c:::I::::::::::
DEM
&TRANS &TDATA = FLOW
COsT
$
T:8UP
T:DEM

Fig. 3 A MODULAR STRUCTURE

29

The logic of this modular structure is that part of the model
gives data concerning the sources of supply (namely PLANT and
SUP), part gives data concerning the customers (namely CUST and
DEM), and part gives data concerning transportation (namely LINK,
FLOW, and COST). Each of these parts can be thought of as dis-
tinct conceptual units.

A monotone ordering of this modular structure is as follows:

Module Sibling Sequence of Module Children
&TRANS &SDATA, &CDATA, &TDATA, S, T:SUP,
T :DEM
&SDATA PLANT, SUP
&CDATA CUST, DEM
&TDATA LINK, FLOW, COST

Clearly th's is an order for the modular structure tree. We need
to verify that this order is monotone.

The preorder traversal of this ordered modular struccure
tree is: &TRANS, &SDATA, PLANT, SUP, &CDATA, CUST, DEM, &TDATA,
LINK, FLOW, COST, $, T:SUP, T:DEM. The corresponding indented
list representation is the modular outline:

&TRANS

&SDATA
PLANT
SUP

&CDATA
CUsT
DEM

&TDATA
LINK
FLOW
CosT

$

T:SUP

T:DEM

It is easy to see that there are no forward references among
genera: if genus B calls genus A, then genus A is always above
genus B in the list. Thus the order must be monotone. Clearly all
this is consistent with Proposition 6.

In addition to the master view just described, these other
views are possible (note that they all inherit a monotone
ordering):

—30_

View 2

&TRANS
&SDATA
PLANT
SUP
&CDATA
CUST
DEM
&TDATA
$
T:SUP
T:DEM

View 6

&TRANS
&SDATA
&CDATA

CcusT
DEM
&TDATA
$
T:SUP
T:DEM

&TRANS

&§SDATA
PLANT
SUP

&CDATA

&TDATA
LINK
FLOW
COST

$

T:SUP

T:DEM

View 7

&TRANS
&SDATA
&CDATA
&TDATA

LINK
FLOW
COST
$
T:SUP
T:DEM

View 4

&TRANS

&SDATA

&CDATA
cCusT
DEM

&TDATA
LINK
FLOW
COoSsT

$

T:SUP

T:DEM

View 8

&TRANS
&SDATA
&CDATA
&TDATA
$
T:SUP
T:DEM

View 5

&TRANS

&SDATA
PLANT
sUp

&CDATA

&TDATA

$

T:SUP

T:DEM

View 9

&TRANS

To illustrate an interpretation, View 2 chooses not to preserve

the details of LINK, FLOW,

unit &TDATA. Its subtree is shown in Figqure 4.

&TRANS

&SDATA <
&CDATA <

&TDATA

$

T:SUP

i

T:DEM

Fig. 4 MODULAR SUBTREE FOR VIEW 2

-3 1_

and COST in support of the conceptual

PLANT

SUP

CUST

DEM

The default modular structure, by contrast, omits &SDATA,

&CDATA, and &TDATA, and has &TRANS as the root and all 10 genera
as terminal nodes.

The genus partition associated with View 2 is:

{PLANT)} (SUP} {CUST} {(DEM} {LINK,FLOW,COST} ($} (T:SUP} {(T:DEM}.

For View 5 it is

{PLANT) (SUP) (CUST,DEM} {LINK,FLOW,COST} ($) {(T:SUP} {(T:DEM}).

It is easy to see that the master view is acyclicity-
preserving by looking at the modular outline. One genus can call
another genus only if the second genus is higher up on the list:
this obviously precludes a calling cycle. A similar argument
suffices to show that all other views are also acyclicity-
preserving. Since all views are acyclicity-preserving, the
modular structure itself is acyclicity-preserving.

Of course, in practice one does not have to enumerate all
possible views in crder to prove that a modular structure is
acyclicity-preserving. Instead, one devises a monotone ordering
and applies Proposition 7.

The module graph corresponding to View 2 is shown in Figure

5. It is acyclic as predicted by Proposition 5. Clearly, it is
also a cecndensaticn cf the germe graph.

T:SUP $ T :DEM
A
&TDATA
S3A D\// \/DEM
PLANT CUsT

Fig. 5 MODULE GRAPH FOR VIEW 2

32

The adjacency matrix asscciated with View 2 is:

&

P T T T

L C D : :

A S U D A S D

N U S E T U E

T P T M A $ P M
PLANT . 1 . .1 . .
SUP 1 .
CUST . . . 1 1 . . .
DEM 1
&TDATA 1 1 1
T:SUP
T : DEM

This can be seen either from the above graph or from the Boolean
summation procedure mentioned near the end of Section 2.

The reachability matrix associated with View 2 is:

&

P T T T

L C D : :

A S U D A S D

N U S8 E T U E

T P T M A $ P M
PLANT 1 1 . . 1 1 1 1
sSuUP 1 . . 1 .
CUST . . 1 1 1 1 1 1
DEM . . . 1 . . 1
&TDATA1 1 1 1
S 1 . .
T:SUP 1 .
T:DEM

A structured model is at hand: the 31 elements corresponding
to the natural language model given at the outset, together with
the generic structure, modular structure, and monotone crdering
given above. This model is incompletely specified owing to the
absence of attribute element values, i.e., the model is
A-nartially specified. To be completely specified, the missing
attribute element values would have to be supplied.

33

Evaluation is straightforward: given nonnegative values for
the FLOW elements, one may calculate the value of $ and the
values of the elements of T:SUP and T:DEM in any order. Any such
model is well-defined because there is no way for the arguments
of the rules of $, T:SUP, and T:DEM to violate the domains of
definition.

We wish now to illustrate the construction used in the proof
of Proposition 7, which can be used to determine many possible
monotone orderings of a modular structure. The construction con-
siders the sibling sets one by one. These sets are:

1. &TRANS

2. &SDATA, &CDATA, &TDATA, $, T:SUP, T:DEM
3. PLANT, SUP

4. CUST, DEM

5. LINK, FLOW, COST.

Consider the first sibling set. The topological sort is
trivial, and yields the label 1 for &TRANS.

Now consider the second sibling set. A topological sort
yields

1 &SDATA, &CDATA
2 &TDATA
3 $, T:SUP, T:DEM

because the genera of &SDATA and &CDATA call no other genera
outside their modules; the genera of &TDATA call only genera in
&SDATA and &CDATA; and the genera of $§, T:SUP, and T:DEM call
genera in &TDATA.

Consider now the third sibling set. A topological sort
yields:

1 PLANT
2 SUP.

Similarly, a topological sort of the fourth sibling set
yields

1 cusT
2 DEM

and of the fifth sibling set yields

1 LINK
2 COST, FLOW.

The results of these topological sorts can be summarized as
follows. This is the topological labeling of the modular tree.

_34.—

Label Module or Genus

1 &TRANS

1 &SDATA

1 &CDATA

2 &TDATA

3 S

3 T:SUP

3 T:DEM

1 PLANT

2 SUp

1 CUST

2 DEM

1 LINK

2 FLOW

2 COosT

In all there are 1x12%x1x1x2 = 24 monotone orderings of the

given modular structure, of which 12 are as follows.

Ordering 1 Ordering 2 Ordering 3 Ordering 4
&TRANS &TRANS &TRANS &TRANS
&SDATA &SDATA &SDATA &SDATA
PLANT PLANT PLANT PLANT
SUP SUP SUP SUP
&CDATA &CDATA &CDATA &CDATA
cusT CUST CUST CUST
DEM DEM DEM DEM
&TDATA &TDATA &TDATA &TDATA
LINK LINK LINK LINK
FLOW FLOW FLOW FLOW
COSsT COSsT COST COST
S S T:SUP T:SUP
T:8SUP T:DEM S T:DEM
T:DEM T:SUP T:DEM $

-3 5~

Ordering 5 Ordering 6 Ordering 7 Ordering 8
&TRANS &TRANS &TRANS &TRANS
&SDATA &SDATA &CDATA &CDATA
PLANT PLANT CUST CUST
SUP SUP DEM DEM
&CDATA &CDATA &SDATA &SDATA
CcUsT CUST PLANT PLANT
DEM DEM SUP SUP
&TDATA &TDATA &TDATA &TDATA
LINK LIMK LINK LINK
FLOW FLOW FLOW FLOW
COSsT COoSsT COosT COST
T : DEM T:DEM S $
$ T:SUP T:SUP T:DEM
T:SUP S T:DEM T:SUP
Ordering 9 Ordering 10 Ordering 11 Ordering 12
&TRANS &TRANS &TRANS &TRANS
&CDATA &CDATA &CDATA &CDATA
CUST CcUsT CusT CUST
DEM DEM DEM DEM
&SDATA &SDATA &SDATA &SDATA
PLANT PLANT PLANT PLANT
SUP SUP SUP SUP
&TDATA &TDATA &TDATA &TDATA
LINK LINK LINK InN
FLOW FLOW FLOW RLOW
COST coSsT COST COST
T:SUP T:5UP T:DEM T:DEM
$ T:DEM $ T:SUP
T :DEM S T:SUP $

The cther 12 orderings are the same, but have FLOW and COST
reversed in position.

Finally, we give some examples of a model schema. One such
is the A-partially specified model just developed. Any complete
specification of attribute values yields a structured model in
the class associated with the A-partially specified model. The
technical requirements of definition 19 are met trivially.

A slightly more general model schema is obtained by allowing
the one just mentioned to have any of the 24 monotone orderings
just indicated for modular structure. Since the only change 1s to
allow alternative orderings of the modular structure tree, we see
from the comment following definition 19 that the isomorphism re-
quirements are still satisfied.

A still more general model schema is obtained by allowing
any subset of all possible transportation links to exist. Note
that this makes the element population of the LINK genus arbi-
trary. Whatever choice may be made for this population, the
obvious compensating changes must be made in the genera which

-36—-

call LINK directly, and these changes induce others in the genera
which call those genera. A moment's reflection shows that the
isomorphism requirement of definition 19 still holds.

Finally, a model schema more general than any of those above
can be obtained by allowing not only the population of LINK to be
arbitrary, but alsoc the populations of PLANT and CUST. The ob-
vious induced changes must be made in the genera that call PLANT
or CUST directly or indirectly, in order for the result to be a
bona fide structured model. Although it is easy to see that the
requirements of definition 19 hold, it is not so easy to specify
this model schema much more formally than the gquite informal and
ambiguous description just given. A suitable notational system is
needed for structured models and model schemata. As mentioned
elsewhere, that is the subject of a forthcoming paper.

-37 =~

APPENDIX 2

CALCULATING A RFACHABTILITY MATRIX FROM AN ADJACENCY MATRIX

Let G be an acyclic directed graph and let A be an adjacency
matrix for it. Assume (a) that A 1is upper triangular, i.e., the
nodes have been topologically sorted, and (b) that all entries
are 0 or 1 (thus no segment identification data can ke encoded as
in the example of Appendix 1). The following algorithm calculates
the reachability matrix R (associated with the same node order-
ing) columnwise in a single pass beginning with the first column.
Assume that there are N nodes (N > 1). A superscript denotes an
entire column of a matrix.

al., set n = 2.

i

Step 1. Put R}

Step 2. Put R = AD +> ®M yhere all addition is Boolean.

i
— Absrsad

h:ap = 1

Step 3. If n =N, go to Step 4.
If n < N, increment n by 1 and return to Step 2.

Step 4. Add the identity matrix to R and STOP.
This algorithm makes it easy to calculate a reachability matrix
for any element graph, genus graph, or module graph once the
nodes have been ordered so that the adjacency matrix is upper
triangular. Such an order is always available from a monotone
ordering.

The validity of the algorithm is most easily shown by
induction on the columns of R.

Proof. 1Iet S + I be the true reachability matrix. Let R be the

result at the conclusion of Step 3. We wish to show that R) =

sl for 1 - j < N. Certainly this is true for j = 1, for the
algorithm puts r! = al; Al and s! must both be 0-vectors be-
cause, by assumption, the first node has no incoming arcs.
Hypothesize that R} =~ s) for 1 < 7 < n (2 <n < N). It remains
to show that RM = s It suftices to show that RT = ST for any
typical conmponent i.

FEither A} = 1 or AT = 0. In the first case, the alqorithm

rute R? = 1; as ST evidently equals 1 also in this case, we

..38_

A

have the desired conclusion R} = s@'. It suffices to consider
the other case wherein A} = 0.

Either s§ = 1 or s¥ = 0. In the first case, there is
a directed path (j; = i, j5,..., Jx = n) from i to n. This

implies that there is a directed path from i to jy_;, and so
Sijk—l = 1. Since Jjx-q7 < n, we have by the inductive hypothesis

that Ri]k"l = 1. But A?k = 1, and so the algorithm puts

RY > Sijk-l. Thus we have the desired conclusion R} = 1 = sf.

Finally, consider the case AR = s = 0. Then R} must
equal 0 also, for otherwise there would have to be an index h
such that A' = 1 and R? = 1; but this would contradict s% = o,
for R? = S? by the inductive hypothesis (Ag = 1 and S? =1
implies that there is a directed path from i to n, which would

violate the case assumption).

QED

A slightly less efficient alternative is the Roy-Warshall
algorithm described, for example, on page 132 of Berztiss <1975>.

-39~

